Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6652): 1357-1362, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37384691

RESUMO

Chromosomes in the eukaryotic nucleus are highly compacted. However, for many functional processes, including transcription initiation, the pairwise motion of distal chromosomal elements such as enhancers and promoters is essential and necessitates dynamic fluidity. Here, we used a live-imaging assay to simultaneously measure the positions of pairs of enhancers and promoters and their transcriptional output while systematically varying the genomic separation between these two DNA loci. Our analysis reveals the coexistence of a compact globular organization and fast subdiffusive dynamics. These combined features cause an anomalous scaling of polymer relaxation times with genomic separation leading to long-ranged correlations. Thus, encounter times of DNA loci are much less dependent on genomic distance than predicted by existing polymer models, with potential consequences for eukaryotic gene expression.


Assuntos
Cromossomos , DNA , Elementos Facilitadores Genéticos , Imagem Molecular , Regiões Promotoras Genéticas , Transcrição Gênica , Núcleo Celular/metabolismo , Cromossomos/química , Cromossomos/genética , DNA/química , DNA/genética , Eucariotos , Polímeros/química , Imagem Molecular/métodos , Animais , Drosophila
2.
ArXiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131882

RESUMO

Transcription commonly occurs in bursts, with alternating productive (ON) and quiescent (OFF) periods, governing mRNA production rates. Yet, how transcription is regulated through bursting dynamics remains unresolved. In this study, we conduct real-time measurements of endogenous transcriptional bursting with single-mRNA sensitivity. Leveraging the diverse transcriptional activities in early fly embryos, we uncover stringent relationships between bursting parameters. Specifically, we find that the durations of ON and OFF periods are linked. Regardless of the developmental stage or body-axis position, gene activity levels predict the average ON and OFF periods of individual alleles. Lowly transcribing alleles predominantly modulate OFF durations (burst frequency), while highly transcribing alleles primarily tune ON durations (burst size). Importantly, these relationships persist even under perturbation of cis-regulatory elements or trans-factors. This suggests a novel mechanistic constraint governing bursting dynamics rather than a modular control of distinct parameters by distinct regulatory processes. Our study provides a foundation for future investigations into the molecular mechanisms underpinning spatiotemporal transcriptional control.

3.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711618

RESUMO

Chromosomes in the eukaryotic nucleus are highly compacted. However, for many functional processes, including transcription initiation, the 3D pair-wise motion of distal chromosomal elements, such as enhancers and promoters, is essential and necessitates dynamic fluidity. Therefore, the interplay of chromosome organization and dynamics is crucial for gene regulation. Here, we use a live imaging assay to simultaneously measure the positions of pairs of enhancers and promoters and their transcriptional output in the developing fly embryo while systematically varying the genomic separation between these two DNA loci. Our analysis reveals a combination of a compact globular organization and fast subdiffusive dynamics. These combined features cause an anomalous scaling of polymer relaxation times with genomic separation and lead to long-ranged correlations compared to existing polymer models. This scaling implies that encounter times of DNA loci are much less dependent on genomic separation than predicted by existing polymer models, with potentially significant consequences for eukaryotic gene expression.

4.
Curr Opin Syst Biol ; 312022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36590072

RESUMO

Models of transcriptional regulation that assume equilibrium binding of transcription factors have been less successful at predicting gene expression from sequence in eukaryotes than in bacteria. This could be due to the non-equilibrium nature of eukaryotic regulation. Unfortunately, the space of possible non-equilibrium mechanisms is vast and predominantly uninteresting. The key question is therefore how this space can be navigated efficiently, to focus on mechanisms and models that are biologically relevant. In this review, we advocate for the normative role of theory-theory that prescribes rather than just describes-in providing such a focus. Theory should expand its remit beyond inferring mechanistic models from data, towards identifying non-equilibrium gene regulatory schemes that may have been evolutionarily selected, despite their energy consumption, because they are precise, reliable, fast, or otherwise outperform regulation at equilibrium. We illustrate our reasoning by toy examples for which we provide simulation code.

5.
Proc Natl Acad Sci U S A ; 117(50): 31614-31622, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33268497

RESUMO

In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene-expression levels that is compatible with in vivo and in vitro biophysical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In nonequilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal nonequilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity, and tunable cooperativity. We find that a single extra parameter, interpretable as the "linking rate," by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in nonequilibrium models is in a trade-off with gene-expression noise, predicting bursty dynamics-an experimentally observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space of nonequilibrium enhancer models to a much smaller subspace that optimally realizes biological function, we deliver a rich class of models that could be tractably inferred from data in the near future.


Assuntos
Elementos Facilitadores Genéticos/genética , Eucariotos/genética , Regulação da Expressão Gênica , Modelos Genéticos , Transcrição Gênica , Complexo Mediador/metabolismo , Fatores de Transcrição/metabolismo
6.
Cell ; 175(3): 835-847.e25, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340044

RESUMO

How transcriptional bursting relates to gene regulation is a central question that has persisted for more than a decade. Here, we measure nascent transcriptional activity in early Drosophila embryos and characterize the variability in absolute activity levels across expression boundaries. We demonstrate that boundary formation follows a common transcription principle: a single control parameter determines the distribution of transcriptional activity, regardless of gene identity, boundary position, or enhancer-promoter architecture. We infer the underlying bursting kinetics and identify the key regulatory parameter as the fraction of time a gene is in a transcriptionally active state. Unexpectedly, both the rate of polymerase initiation and the switching rates are tightly constrained across all expression levels, predicting synchronous patterning outcomes at all positions in the embryo. These results point to a shared simplicity underlying the apparently complex transcriptional processes of early embryonic patterning and indicate a path to general rules in transcriptional regulation.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Ativação Transcricional , Animais , RNA Polimerases Dirigidas por DNA/metabolismo , Drosophila melanogaster , Embrião não Mamífero/metabolismo , Modelos Teóricos , Regiões Promotoras Genéticas
7.
Proc Natl Acad Sci U S A ; 115(27): 7153-7158, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915087

RESUMO

Many mammalian genes are transcribed during short bursts of variable frequencies and sizes that substantially contribute to cell-to-cell variability. However, which molecular mechanisms determine bursting properties remains unclear. To probe putative mechanisms, we combined temporal analysis of transcription along the circadian cycle with multiple genomic reporter integrations, using both short-lived luciferase live microscopy and single-molecule RNA-FISH. Using the Bmal1 circadian promoter as our model, we observed that rhythmic transcription resulted predominantly from variations in burst frequency, while the genomic position changed the burst size. Thus, burst frequency and size independently modulated Bmal1 transcription. We then found that promoter histone-acetylation level covaried with burst frequency, being greatest at peak expression and lowest at trough expression, while remaining unaffected by the genomic location. In addition, specific deletions of ROR-responsive elements led to constitutively elevated histone acetylation and burst frequency. We then investigated the suggested link between histone acetylation and burst frequency by dCas9p300-targeted modulation of histone acetylation, revealing that acetylation levels influence burst frequency more than burst size. The correlation between acetylation levels at the promoter and burst frequency was also observed in endogenous circadian genes and in embryonic stem cell fate genes. Thus, our data suggest that histone acetylation-mediated control of transcription burst frequency is a common mechanism to control mammalian gene expression.


Assuntos
Fatores de Transcrição ARNTL/biossíntese , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/fisiologia , Histonas/metabolismo , Modelos Biológicos , Regiões Promotoras Genéticas/fisiologia , Transcrição Gênica/fisiologia , Fatores de Transcrição ARNTL/genética , Acetilação , Animais , Camundongos , Células NIH 3T3
8.
Mol Syst Biol ; 11(7): 823, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26215071

RESUMO

Mammalian transcription occurs stochastically in short bursts interspersed by silent intervals showing a refractory period. However, the underlying processes and consequences on fluctuations in gene products are poorly understood. Here, we use single allele time-lapse recordings in mouse cells to identify minimal models of promoter cycles, which inform on the number and durations of rate-limiting steps responsible for refractory periods. The structure of promoter cycles is gene specific and independent of genomic location. Typically, five rate-limiting steps underlie the silent periods of endogenous promoters, while minimal synthetic promoters exhibit only one. Strikingly, endogenous or synthetic promoters with TATA boxes show simplified two-state promoter cycles. Since transcriptional bursting constrains intrinsic noise depending on the number of promoter steps, this explains why TATA box genes display increased intrinsic noise genome-wide in mammals, as revealed by single-cell RNA-seq. These findings have implications for basic transcription biology and shed light on interpreting single-cell RNA-counting experiments.


Assuntos
Regiões Promotoras Genéticas , Imagem com Lapso de Tempo/métodos , Transcrição Gênica , Animais , Cadeias de Markov , Camundongos , Células-Tronco Embrionárias Murinas/fisiologia , Células NIH 3T3 , TATA Box
9.
Methods ; 85: 3-11, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25934263

RESUMO

Fluorescence and bioluminescence time-lapse imaging allows to investigate a vast range of cellular processes at single-cell or even subcellular resolution. In particular, time-lapse imaging can provide uniquely detailed information on the fine kinetics of transcription, as well as on biological oscillations such as the circadian and cell cycles. However, we face a paucity of automated methods to quantify time-lapse imaging data with single-cell precision, notably throughout multiple cell cycles. We developed CAST (Cell Automated Segmentation and Tracking platform) to automatically and robustly detect the position and size of cells or nuclei, quantify the corresponding light signals, while taking into account both cell divisions (lineage tracking) and migration events. We present here how CAST analyzes bioluminescence data from a short-lived transcriptional luciferase reporter. However, our flexible and modular implementation makes it easily adaptable to a wide variety of time-lapse recordings. We exemplify how CAST efficiently quantifies single-cell gene expression over multiple cell cycles using mouse NIH3T3 culture cells with a luminescence expression driven by the Bmal1 promoter, a central gene of the circadian oscillator. We further illustrate how such data can be used to quantify transcriptional bursting in conditions of lengthened circadian period, revealing thereby remarkably similar bursting signature compared to the endogenous circadian condition despite marked period lengthening. In summary, we establish CAST as novel tool for the efficient segmentation, signal quantification, and tracking of time-lapse images from mammalian cell culture.


Assuntos
Análise de Célula Única/métodos , Imagem com Lapso de Tempo/métodos , Transcrição Gênica , Animais , Automação Laboratorial/métodos , Processamento de Imagem Assistida por Computador/métodos , Cinética , Camundongos , Células NIH 3T3 , Transcrição Gênica/fisiologia
10.
Proc Natl Acad Sci U S A ; 110(51): 20563-8, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297917

RESUMO

Mammalian genes are often transcribed discontinuously as short bursts of RNA synthesis followed by longer silent periods. However, how these "on" and "off" transitions, together with the burst sizes, are modulated in single cells to increase gene expression upon stimulation is poorly characterized. By combining single-cell time-lapse luminescence imaging with stochastic modeling of the time traces, we quantified the transcriptional responses of the endogenous connective tissue growth factor gene to different physiological stimuli: serum and TGF-ß1. Both stimuli caused a rapid and acute increase in burst sizes. Whereas TGF-ß1 showed prolonged transcriptional activation mediated by an increase of transcription rate, serum stimulation resulted in a large and temporally tight first transcriptional burst, followed by a refractory period in the range of hours. Our study thus reveals how different physiological stimuli can trigger kinetically distinct transcriptional responses of the same gene.


Assuntos
Modelos Biológicos , Transcrição Gênica/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Camundongos , Células NIH 3T3 , Processos Estocásticos
11.
Nat Methods ; 10(6): 570-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584187

RESUMO

The cellular abundance of transcription factors (TFs) is an important determinant of their regulatory activities. Deriving TF copy numbers is therefore crucial to understanding how these proteins control gene expression. We describe a sensitive selected reaction monitoring-based mass spectrometry assay that allowed us to determine the copy numbers of up to ten proteins simultaneously. We applied this approach to profile the absolute levels of key TFs, including PPARγ and RXRα, during terminal differentiation of mouse 3T3-L1 pre-adipocytes. Our analyses revealed that individual TF abundance differs dramatically (from ∼250 to >300,000 copies per nucleus) and that their dynamic range during differentiation can vary up to fivefold. We also formulated a DNA binding model for PPARγ based on TF copy number, binding energetics and local chromatin state. This model explains the increase in PPARγ binding sites during the final differentiation stage that occurs despite a concurrent saturation in PPARγ copy number.


Assuntos
Diferenciação Celular , Proteômica/métodos , Fatores de Transcrição/análise , Células 3T3-L1 , Animais , DNA/metabolismo , Camundongos , PPAR gama/análise , PPAR gama/metabolismo , Receptor X Retinoide alfa/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...